
Acta Technica 62 (2017), No. 5B, 687�696 c© 2017 Institute of Thermomechanics CAS, v.v.i.

Improve SSD performance by prefetch
strategy

Chao Yin2, Tong fang Li3, Yan Liu2, Sihao

Yuan2, Qin Zhan2

Abstract. SSD (Solid state disk) based �ash is a new storage device in recent years. Compared
with the traditional hard disk, SSD has obvious advantages in performance, energy consumption,
reliability, size and so on. Now, SSD has gradually become an important storage device for portable
computer systems, desktop computer systems, large server systems, high-performance computing
systems. SSD has many features, such as erasion before writing, limited numbers of erasion. People
should take good use of these features so that they can use SSD with the maximum e�ectiveness.

In order to improve the performance of SSD, it is necessary to design the software structure of
SSD under certain conditions. One of the most important software structure is DFTL (demanded-
based translation layer �ash), which was designed from FTL (translation layer �ash) and has higher
performance than FTL because of using the workload locality.

DFTL only considered the time locality and ignored the spatial locality. In order to further
improve the hit rate of cache, we need to fully exploit the workload, especially the spatial locality
of the workload. Prefetch technology is an e�ective way to solve this problem. In the paper, we
have proposed a new prefetch technology, called TLLLP (Two Level Linked List Prefetch), which
can improve the hit rate of cache greatly. In order to make full use of the spatial locality of
the workload, TLLLP determine the prefetch length of cache according to the historical mapping
information, the current request length and available space information in the mapping table. At
the same time, it can prefetch the mapping entries which will likely be accessed in the near future
in advance into the cache to improve the hit rate of cache.

We have used four traces to evaluate our TLLLP prototype by simulation test and compared
with No Cache, DFTL. The result shows that TLLLP has higher hit rate than DFTL because of
prefetch technology. The performance is also signi�cantly improved by reducing the overhead of
the additional operation. The average response time of TLLLP is 12% lower than that of DFTL
and The response time standard deviation of SSD in TLLLP have been reduced by an average of
15% than that of DFTL.

Key words. SSD, TLLLP, DFTL, prefetch.

1Acknowledgment - This work was supported by Science and technology project of Jiangxi
Provincial Department of Education (GJJ151081 and GJJ161072).

2Workshop 1 - School of Information Science and Technology, Jiujiang University, Jiujiang
332005, China

3Corresponding author: Tong fang Li ;email:maggie0611@163.com

http://journal.it.cas.cz

maggie0611@163.com


688 CHAO YIN, TONG FANG LI, YAN LIU, SIHAO YUAN, QIN ZHAN

1. Introduction

With the rapid development of Internet technology, not only large companies
but also small enterprises have already accumulated PB level data. It becomes
more and more urgent to improve the management ability for big data because the
exponentially network access increases. In cloud computing technology nowadays, a
large number of applications focused on data are becoming more and more popular.
A large amount of data and users put forward higher requirements to the availability
and scalability of storage resources.

In recent years, �ash memory technology has been greatly improved. Since the
increasing of its storage density and the decreasing of the unit capacity cost, SSD
based �ash has received widespread attention. Compared to the disk, SSD can
provide better bandwidth and lower access delay, so that it has been widely deployed
in the high performance storage system. SSD has the characteristics of fast reading
and writing, light weight, low energy consumption and small size, which are not
available in traditional mechanical hard disk.

SSD is regarded as a block device as it provides interface like the traditional
mechanical hard disk. However, internal structure of SSD is di�erent from that
of the mechanical hard disk. Unlike mechanical hard disk positioning data by the
movement of the magnetic head, SSD mainly depends on a software structure FTL[1]
to convert the logical address into speci�c physical address. FTL has three functions,
that are address mapping, garbage collection and wear leveling. When there are
no free blocks, it will depend on the garbage collection mechanism to release the
resource. It can avoid some data to be erased repeatedly through the wear leveling.

There are many mapping strategies in SSD. Page level mapping is one of the
frequently used mapping strategies which is always used in high performance storage
because of its small size and �exible character. The mapping table will be a little
larger if using page level mapping so that it will cost a lot. Many algorithms have
been proposed, such as DFTL[2], S-FTL[3]. DFTL is a new page level mapping
FTL based on the requirements. DFTL has used the locality of the workloads,
which stores the most frequently used mapping entries in limited SRAM space, and
puts the entire table and stored data into the �ash memory chip.

DFTL only considered the time locality and ignored the spatial locality. In order
to further improve the hit rate of cache, we need to fully exploit the workload, espe-
cially the spatial locality of the workload. We have developed a prefetch technology
named TLLLP, which aims to improve the spatial locality greatly. In order to make
full use of the spatial locality of the workload, TLLLP has used two level linked list
to organize the data. After analyzing the relationship and the spatial locality of the
request, TLLLP can transfer the relative request into cache. When these requests
are called in the near future, they can read from the cache directly. This operation
will improve the system performance greatly.

The map entries are cached in the smallest size by the segmented caching strategy
of DFTL, and are divided into two sections: the hot process and the cold one. In
order to improve the e�ciency, we had better update the latest entries which belong
to one mapping page together. This operation can avoid the extra overhead because



IMPROVE SSD PERFORMANCE 689

of searching such an entry from the entire cache. BPLRU[4], PUDLRU[5] have
designed two linked list to deal with the above problem e�ectively. In the two linked
list, the �rst linked list is composed of mapping page nodes, and each page node
maintains a second linked list composed by mapping entries in the same mapping
page. Comparing with the strategy in BPLRU, the size of the minimum organization
is much smaller, because the minimum organization is mapping entries in the two
level linked list, while the minimum organization is mapping pages in BPLRU. In
the following, we will design this two level linked list into our system.

The contributions of this paper are described as follows:
TLLLP is based on the principle of spatial locality of workload. By prefetch, the

mapping entries that are likely to be accessed in the near future are also transferred
to the cache. The next request from the upper layer can be hit directly in the cache,
which will reduce the overhead of additional reading map tables.

TLLLP has used the two level linked lists, in which the minimum organization
is mapping pages. The two level linked lists can make the layout more reasonable
and improve the prefetch e�ciency.

Experimental results show that TLLLP algorithm has improved a lot in the
performance of the system.

The rest of this paper is organized as follows. Section 2 introduces the design
and implement of TLLLP algorithm. The experimental result and evaluation are
described in Section 3. Section 4 is related work. Section 5 is the conclusion.

2. The prefetch algorithm

2.1. The design of the algorithm

The mapping table caching algorithm in DFTL only considered the time locality
and ignored the spatial locality. In order to solve this problem, it is necessary to use
prefetch technology. In this section, we will describe the TLLLP algorithm in detail.

As mentioned earlier, prefetch strategy is used to make better use of the spatial
locality of the workload, which is not considered in the original cache strategy. In
order to use prefetch policy, there must be an additional cache space to do prefetch,
and this extra space occupation must ensure that the performance of the cache
policy does not fall. At some time, if the prefetch condition is satis�ed, that is,
when the prefetch operation is triggered, the cache must provide the space to store
the prefetch entries. We need to take into account the prefetch condition, that is the
order of the information that has been visited, the page size of the current access
request, and the size of the current cache. For the current page level request, if the
corresponding mapping information is not found in the cache, it is necessary to do
prefetch operation. We describe the TLLLP algorithm as follows:

After the current request is divided into one or more page requests. If it is the
�rst page request or the �rst page of a new page mapping request, the prefetch
window is set two times the pages from the current page level request to the end
page of the current request.

If the entries in current page level request is in the same mapping page as those in



690 CHAO YIN, TONG FANG LI, YAN LIU, SIHAO YUAN, QIN ZHAN

the last page level request, the prefetch window should be set four times the pages
from the current page level request to the end page of the current request. This
principle is going on.

The number of the prefetch is the minimum number between the mapping entries
of the current prefetch window and those sequential requested in history.

2.2. The implementation of the algorithm

To clearly understand the problem, we have developed a model based on DFTL
to perform an in-depth analysis on the overhead of address translation. Table 1 gives
a list of symbols used in our analysis.

Combining with the number of page level requests for historical sequential access
and the current request information, the relationship among the three symbol can
be derived as Equation 1.

prefetch_num = min (fetch_num+ 1,min_fetch_num) (1)

Table 1. Con�gure Information

Symbol Description

fetch_num the prefetch value of the precursor page
level request

min_fetch_numthe prefetch value based on the current
request

prefetch_num the last prefetch value

visited_num the visited number of the mapping en-
tries

In addition, the numbers of prefetch mapping entries should combine with the
current capacity of cache. If the cache is full, we should drive out the mapping
entries in one page mapping room as far as possible. This operation can avoid extra
reading and writing overhead because of driving out the entries in di�erent mapping
page.

The cache space is very limited so that only the subset of the global mapping
tables are stored in the DFTL mapping cache. After the system has worked for a
time without dealing with the cache, there is no extra space in the mapping table
cache to store the prefetch entries. It is necessary to vacate the space for the mapping
entries that may be accessed at some point in the future by driving out a portion of
the mapping entries used infrequently when the cache is full.

In the TLLLP algorithm we should consider two important questions. The �rst
one is what kind of mapping entries should be driven out. The second one is how
many mapping entries should be driven out each time.

For the �rst question, the mapping entry to be driven out �rst must be the least
visited mapping entry in the cache. we de�ne the visited number of the mapping



IMPROVE SSD PERFORMANCE 691

entries as visited_num. However, the mapping entry to be driven out is not neces-
sarily the mapping entry of the smallest visited_num in the cache organization of
the two level linked list. It is the integrated result of two level lists. At the �rst level,
the mapping entry to be driven must be the least visited map page. We evaluate
the least visited map page by taking the average value of visited_num in the second
level list. The mapping page with the minimum value is selected in the �rst level
list, the mapping entry with smallest value of visited_num in the second mapping
list will be driven out.

It is a critical issue to determine how many mapping entries to be driven out
each time. If the numbers of the mapping entries driven out each are too small, the
prefetch e�ect is not obvious. If the numbers are too much, it is easier to driven out
some entries that will be requested in the near future.

According to the discuss above, TLLLP is designed to drive in accordance with
the size of the mapping page, that is, at least in the cache will be the most recent
visit to the map of all the mapping entries are out. All the mapping entries in the
most recently visited mapping page are driven out each time.

Fig. 1. The Structure of TLLLP

The �rst level list is arranged in an orderly fashion according to the frequency
at which the mapping entries in the cache map are located, that is, the front row of
the map page is rarely accessed. The structure of TLLLP is shown as Figure 1. TP7
is a mapping page, under which there are two mapping entries Entry2 and Entry4.
These two entries have recently been rarely accessed. When the cache is full, we
select the mapping page TP7 to be driven out according to the order, select the
mapping entry all TP7 as out of the items. The system will have an idle mapping
page and two mapping entries. From Figure 1 we can see that the vacated space is
the sacri�ced mapping page that the actual prefetch needs.

This scheme is convenient for prefetch and implementation easily. It can obtain a
larger cache space at one prefetch operation. As a result of the removal of a number
of mapping entries, some hot items may be driven out of the cache. The next time
you visit it, it will bring extra reading and writing overhead.



692 CHAO YIN, TONG FANG LI, YAN LIU, SIHAO YUAN, QIN ZHAN

3. Experimental results

3.1. Geometry of the plate

We have tested our system by three classes of traces. The �rst class of traces is
collected from Finance. Financial 1 is based on small write request, while Financial
2 is mostly small read request. The second class of traces is Websearch. The last
class of traces is MSR (Microsoft server).

3.2. Experimental tests

3.2.1. Geometrical dimensions We have used the prefetch strategy to improve
the hit rate. Through e�ective prefetch algorithm, the mapping entries likely to be
accessed will be transferred into cache to improve the cache hit rate in the near
future.

Fig. 2. The Structure of Financial 1, Financial 2, Websearch and MSR

From Figure 2, we can see that the hit rate of TLLLP is higher than that of
DFTL in the case of the size of the mapping table cache changing. The Websearch
has the most signi�cant increase in hit rate. Based on the analysis of websearch, we
�nd that its temporal locality is very poor. For the cache algorithm only considering
temporal locality of the workload as DFTL, the hit rate is very low. We have full
consideration of the temporal and spatial locality of the workload in TLLLP, so
that the hit rate of TLLLP is greater than that of DFTL. The hit rate of DFTL is
very high when using MSR, which is because the locality of MSR is better and the
average length of request is larger. We can get more mapping entries into cache by
prefetch algorithm.

3.2.2. The performance comparison In view of the impact of TLLLP on SSD
performance, we have considered not only the hit rate of mapping table cache, but
also two other indicators: the average response time of SSD and the standard de-
viation of response time. The average response time of SSD is the mean time from
the time that the request reaches the SSD to the time that the request have been
deal with. The standard deviation of the response time measures the change of



IMPROVE SSD PERFORMANCE 693

the response time of SSD, which represents the discrepancy of the response time of
SSD with the average response time of SSD. The smaller the value, the higher the
consistency of the SSD quality of service.

We have tested the e�ect of several di�erent mapping table caching algorithms on
the average response time of SSD in the case of four cache workloads shown as Figure
3. From the analysis of the �gure, it can be seen that the average response time of
TLLLP is 12% lower than that of DFTL. It shows that the algorithm improving the
average response time of SSD is no good as improving hit rate. This is because the
time in garbage is a large proportion of the response time of the SSD, and TLLLP
and DFTL algorithms have used the same garbage collection algorithm.

Fig. 3. Average Response Time

In these four workloads, the average response time of the Financial 1 is the
longest. This workload is a small write type, which will bring more page-level writes.
The response time of TLLLP is the shortest, which can reduced by 16.64% than that
of DFTL. This is because the mapping table cache will create a large number of dirty
entries in the small write workload, and TLLLP has greatly reduced the read and
write mapping.

We used the four standard workloads in several cache algorithms to test the
response time standard deviation of SSD, which is shown in Figure 4. The response
time standard deviation of SSD in TLLLP have been reduced by an average of 15%
than that of DFTL except in the workload of Financial 1. For read-based workload,
TLLLP can improve the hit rate and reduce the operation to the �ash mapping table.
To write-based trace, especially for workloads with a large proportion of writes, the
di�erence in cost is relatively large between write and read. In the case of large
number of write hit rate, such as Financial 1, which is write-based. The time cost
is very large among the operations, such as read operations, big write operation
and small write operation, so that its standard response time is greater than that
of DFTL by 10%. However, for the average response time reduction of 16.64%, the
appropriate increase in the standard deviation is acceptable, especially for this type
of workload.



694 CHAO YIN, TONG FANG LI, YAN LIU, SIHAO YUAN, QIN ZHAN

Fig. 4. SSD Response Time Standard Deviation

4. Related works

The data which has not yet been accessed but will be accessed in the near future,
will transferred from the low-speed storage device to cache devices to improve the
speed of data access and the performance of the whole storage system. These oper-
ations are named prefetch [6][7][8]. From the above de�nition, we can see that the
two key problems need to be solved by using prefetch technology. The �rst one is
the expected precision which is an important index to the cache hit rate. If the data
prefetched into high-speed device data is rarely accessed in the near future, it means
the prefetch accuracy very low. It is not only a waste of bandwidth, what's more, it
is a waste of the valuable space. The second one is the mining of continuity of the
prefetch data. There are two aspects in the sequential mining, the �rst aspect is to
search the order of the historical data to predict the length of the future. A large
number of studies have shown that the longer a sequential access stream has been
accessed, the more likely it is to access the next sequential data. Another aspect is
to fully exploit the sequential access in the current access to improve the cache hit
rate.

A very important factor in sequential prefetch technology [9] is the length infor-
mation which is a quantitative index of prefetch. The di�erence between the random
request and the sequential request is enormous to the traditional mechanical hard
disks. The traditional prefetch strategy [10] [11]always puts the entry which will be
accessed in the near future into the cache to optimize the operational speed. In the
actual design process, we need to take good use of the length of sequential prefetch,
the length of the current request and the bu�er size left. We must �nd out a balance
point among these information to avoid excessive prefetch. We also should prevent
some hot items being driven out because of getting rid of the entries in the cache
frequently.



IMPROVE SSD PERFORMANCE 695

5. Conclusion

We have developed IFTL algorithm which can e�ectively reduce the overhead of
read and write map table in the FTL, and improve the reading and writing perfor-
mance of SSD. However, there are some problems in this algorithm. For example,
when the local load is not very good, the extra space overhead caused by the intro-
duction of the cache map page will be relatively large. These are the aspects we will
improve in the future.

References

[1] Y.Hu, H. Jiang, D. Feng, L.Tian, S. Zhang, J. Liu, W.Tong, Y.Qin,
L.Wang: Achieving page-mapping FTL performance at block-mapping FTL cost by
hiding address translation. In Proceedings of Mass Storage Systems and Technologies
(2010).

[2] A.Gupta, Y.Kim, B.Urgaonkar: DFTL: a �ash translation layer employing
demand-based selective caching of page-level address mappings. In Proceedings of the
International Conference on Architectural Support for Programming Languages and
Operating System (2009), 229�240.

[3] S. Jiang, L. Zhang, X.Yuan, H.Hu, Y.Chen: S-FTL: an e�cient address trans-
lation for �ash memory by exploiting spatial locality. In Proceedings of Mass Storage
Systems and Technologies (MSST) (2011).

[4] H.Kim, S.Ahn: A Bu�er Management Scheme for Improving Random Writes in
Flash Storage. In: Proceedings of the 6th USENIX Conference on File and Storage
Technologies. San Jose (2008).

[5] J.Hu, H. Jiang, L. Tian: PUD-LRU: An Erase-E�cient Write Bu�er Management
Algorithm for Flash Memory SSD. Proceedings of the 18th Annual meeting of IEEE
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (2010).

[6] S. Park, D. Jung, J.Kang: A Replacement Algorithm for Flash Memory. In: Pro-
ceedings of the 4th International Conference on Compilers. Architectures, and Synthe-
sis for Embedded Systems (2009).

[7] G.Graefe: The Five-minute Rule Twenty Years Later and How Flash Memory
Changes the Rules. In: Proceedings of 3rd international workshop on Data Mange-
ment on New Hardware (2007).

[8] F.Chen, T. Luo, X. Zhang: a content-aware �ash translation layer enhancing the
lifespan of �ash memory based solid state drives. In Proceedings of the 9th USENIX
Conference on File and Stroage Technologies (2011), 77�90.

Received November 16, 2017



696 CHAO YIN, TONG FANG LI, YAN LIU, SIHAO YUAN, QIN ZHAN


	Chao Yin, Tong fang Li, Yan Liu, Sihao Yuan, Qin Zhan: Improve SSD performance by prefetch strategy
	Introduction
	The prefetch algorithm
	Experimental results
	Related works
	Conclusion


